Parallel Extensions in C#
Parallel Extensions in C#
**Parallel Extensions** in C# provide a high-level abstraction for **parallel programming**, improving performance by distributing workloads across **multiple CPU cores**. The **System.Threading.Tasks.Parallel** class offers methods like **Parallel.For, Parallel.ForEach, and Parallel.Invoke** to execute tasks in parallel efficiently.
Key Features of Parallel Extensions
- Allows **automatic workload distribution** across multiple cores.
- Supports **parallel loops (Parallel.For, Parallel.ForEach)**.
- Efficiently runs **independent tasks** using **Parallel.Invoke**.
- Utilizes **task scheduling and thread pooling** for better performance.
Executing Multiple Actions with Parallel.Invoke
The **Parallel.Invoke()** method allows running multiple independent actions in parallel.
Example: Using Parallel.Invoke() for Parallel Execution
using System;
using System.Threading.Tasks;
class Program
{
static void Task1() => Console.WriteLine($"Task 1 executed by {Task.CurrentId}");
static void Task2() => Console.WriteLine($"Task 2 executed by {Task.CurrentId}");
static void Main()
{
Parallel.Invoke(Task1, Task2);
Console.WriteLine("Parallel tasks executed.");
}
}
// Output:
// Task 1 executed by 1
// Task 2 executed by 2
// Parallel tasks executed.
The **Parallel.Invoke()** method executes multiple **independent tasks** in parallel.
Executing Loops in Parallel Using Parallel.For
The **Parallel.For()** method executes loop iterations in parallel across multiple CPU cores.
Example: Using Parallel.For() for Faster Iteration
using System;
using System.Threading.Tasks;
class Program
{
static void Main()
{
Parallel.For(1, 6, i =>
{
Console.WriteLine($"Iteration {i} executed by Task {Task.CurrentId}");
});
Console.WriteLine("Parallel loop completed.");
}
}
// Output (order may vary):
// Iteration 1 executed by Task 1
// Iteration 2 executed by Task 2
// Iteration 3 executed by Task 3
// Iteration 4 executed by Task 4
// Iteration 5 executed by Task 5
// Parallel loop completed.
**Parallel.For()** automatically distributes iterations **across available CPU cores**.
Processing Collections in Parallel Using Parallel.ForEach
The **Parallel.ForEach()** method processes collection elements **in parallel**, improving performance for large data sets.
Example: Processing a List Using Parallel.ForEach()
using System;
using System.Collections.Generic;
using System.Threading.Tasks;
class Program
{
static void Main()
{
List<string> names = new List<string> { "Alice", "Bob", "Charlie", "David" };
Parallel.ForEach(names, name =>
{
Console.WriteLine($"Processing {name} on Task {Task.CurrentId}");
});
Console.WriteLine("Parallel ForEach completed.");
}
}
// Output (order may vary):
// Processing Alice on Task 1
// Processing Bob on Task 2
// Processing Charlie on Task 3
// Processing David on Task 4
// Parallel ForEach completed.
**Parallel.ForEach()** speeds up processing of **large collections** by utilizing multiple CPU cores.
Performance Considerations When Using Parallel Extensions
While parallel extensions improve performance, consider these best practices:
- Use **Parallel.For()** and **Parallel.ForEach()** for **CPU-bound tasks**.
- Avoid parallelism for **small tasks**, as the overhead may reduce performance.
- Ensure **thread safety** when modifying shared resources in **parallel loops**.
- Use **CancellationToken** to allow stopping parallel execution if necessary.
When to Use Parallel Extensions
- Use Parallel Extensions for **CPU-intensive** operations that can be divided into **independent tasks**.
- Avoid Parallel Extensions when working with **I/O-bound operations** (use **async/await** instead).
- Use **Parallel.ForEach()** for **batch processing** of large datasets.
- Ensure **workload is evenly distributed** to avoid **load imbalance across CPU cores**.